metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.46D6, C6.292+ (1+4), C22≀C2⋊7S3, (C2×D4).86D6, C22⋊C4.2D6, D6⋊3D4⋊14C2, C24⋊4S3⋊8C2, D6⋊C4⋊14C22, (D4×Dic3)⋊13C2, C23.14D6⋊5C2, Dic3⋊4D4⋊4C2, C23.9D6⋊14C2, (C2×C12).31C23, (C2×C6).137C24, C4⋊Dic3⋊27C22, C23.12D6⋊12C2, C2.31(D4⋊6D6), Dic3⋊C4⋊12C22, C3⋊3(C22.32C24), (C4×Dic3)⋊17C22, (C2×Dic6)⋊22C22, (C6×D4).111C22, C23.23D6⋊5C2, C23.8D6⋊12C2, (C23×C6).70C22, Dic3.D4⋊14C2, C23.11D6⋊14C2, C6.D4⋊17C22, (C22×S3).56C23, (C22×C6).182C23, C23.187(C22×S3), C22.158(S3×C23), (C2×Dic3).62C23, C22.10(D4⋊2S3), (C22×Dic3)⋊16C22, (S3×C2×C4)⋊10C22, C6.78(C2×C4○D4), (C3×C22≀C2)⋊8C2, (C2×C6).44(C4○D4), C2.29(C2×D4⋊2S3), (C2×C3⋊D4)⋊10C22, (C2×C4).31(C22×S3), (C2×C6.D4)⋊21C2, (C3×C22⋊C4).3C22, SmallGroup(192,1152)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 656 in 250 conjugacy classes, 95 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C3, C4 [×10], C22, C22 [×2], C22 [×18], S3, C6 [×3], C6 [×5], C2×C4 [×3], C2×C4 [×11], D4 [×9], Q8, C23 [×4], C23 [×5], Dic3 [×7], C12 [×3], D6 [×3], C2×C6, C2×C6 [×2], C2×C6 [×15], C42 [×2], C22⋊C4 [×3], C22⋊C4 [×11], C4⋊C4 [×6], C22×C4 [×4], C2×D4 [×3], C2×D4 [×4], C2×Q8, C24, Dic6, C4×S3, C2×Dic3 [×7], C2×Dic3 [×3], C3⋊D4 [×5], C2×C12 [×3], C3×D4 [×4], C22×S3, C22×C6 [×4], C22×C6 [×4], C2×C22⋊C4, C4×D4 [×2], C22≀C2, C22≀C2, C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4 [×2], C42⋊2C2 [×2], C4×Dic3 [×2], Dic3⋊C4 [×4], C4⋊Dic3 [×2], D6⋊C4 [×2], C6.D4 [×9], C3×C22⋊C4 [×3], C2×Dic6, S3×C2×C4, C22×Dic3 [×3], C2×C3⋊D4 [×4], C6×D4 [×3], C23×C6, C22.32C24, Dic3.D4, C23.8D6 [×2], Dic3⋊4D4, C23.9D6, C23.11D6, D4×Dic3, C23.23D6, C23.12D6, D6⋊3D4, C23.14D6 [×2], C2×C6.D4, C24⋊4S3, C3×C22≀C2, C24.46D6
Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×2], C24, C22×S3 [×7], C2×C4○D4, 2+ (1+4) [×2], D4⋊2S3 [×2], S3×C23, C22.32C24, C2×D4⋊2S3, D4⋊6D6 [×2], C24.46D6
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=d, ab=ba, eae-1=ac=ca, ad=da, faf-1=acd, bc=cb, ebe-1=bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
(2 20)(4 22)(6 24)(8 14)(10 16)(12 18)(25 41)(26 32)(27 43)(28 34)(29 45)(30 36)(31 47)(33 37)(35 39)(38 44)(40 46)(42 48)
(1 7)(3 9)(5 11)(13 19)(15 21)(17 23)(25 47)(26 42)(27 37)(28 44)(29 39)(30 46)(31 41)(32 48)(33 43)(34 38)(35 45)(36 40)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 47)(26 48)(27 37)(28 38)(29 39)(30 40)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 7 27)(2 26 8 32)(3 31 9 25)(4 36 10 30)(5 29 11 35)(6 34 12 28)(13 37 19 43)(14 42 20 48)(15 47 21 41)(16 40 22 46)(17 45 23 39)(18 38 24 44)
G:=sub<Sym(48)| (2,20)(4,22)(6,24)(8,14)(10,16)(12,18)(25,41)(26,32)(27,43)(28,34)(29,45)(30,36)(31,47)(33,37)(35,39)(38,44)(40,46)(42,48), (1,7)(3,9)(5,11)(13,19)(15,21)(17,23)(25,47)(26,42)(27,37)(28,44)(29,39)(30,46)(31,41)(32,48)(33,43)(34,38)(35,45)(36,40), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,47)(26,48)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,26,8,32)(3,31,9,25)(4,36,10,30)(5,29,11,35)(6,34,12,28)(13,37,19,43)(14,42,20,48)(15,47,21,41)(16,40,22,46)(17,45,23,39)(18,38,24,44)>;
G:=Group( (2,20)(4,22)(6,24)(8,14)(10,16)(12,18)(25,41)(26,32)(27,43)(28,34)(29,45)(30,36)(31,47)(33,37)(35,39)(38,44)(40,46)(42,48), (1,7)(3,9)(5,11)(13,19)(15,21)(17,23)(25,47)(26,42)(27,37)(28,44)(29,39)(30,46)(31,41)(32,48)(33,43)(34,38)(35,45)(36,40), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,47)(26,48)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,26,8,32)(3,31,9,25)(4,36,10,30)(5,29,11,35)(6,34,12,28)(13,37,19,43)(14,42,20,48)(15,47,21,41)(16,40,22,46)(17,45,23,39)(18,38,24,44) );
G=PermutationGroup([(2,20),(4,22),(6,24),(8,14),(10,16),(12,18),(25,41),(26,32),(27,43),(28,34),(29,45),(30,36),(31,47),(33,37),(35,39),(38,44),(40,46),(42,48)], [(1,7),(3,9),(5,11),(13,19),(15,21),(17,23),(25,47),(26,42),(27,37),(28,44),(29,39),(30,46),(31,41),(32,48),(33,43),(34,38),(35,45),(36,40)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,47),(26,48),(27,37),(28,38),(29,39),(30,40),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,7,27),(2,26,8,32),(3,31,9,25),(4,36,10,30),(5,29,11,35),(6,34,12,28),(13,37,19,43),(14,42,20,48),(15,47,21,41),(16,40,22,46),(17,45,23,39),(18,38,24,44)])
Matrix representation ►G ⊆ GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,3,6,0,0,0,0,0,0,3,10,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0] >;
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | ··· | 4L | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 12A | 12B | 12C |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 12 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | C4○D4 | 2+ (1+4) | D4⋊2S3 | D4⋊6D6 |
kernel | C24.46D6 | Dic3.D4 | C23.8D6 | Dic3⋊4D4 | C23.9D6 | C23.11D6 | D4×Dic3 | C23.23D6 | C23.12D6 | D6⋊3D4 | C23.14D6 | C2×C6.D4 | C24⋊4S3 | C3×C22≀C2 | C22≀C2 | C22⋊C4 | C2×D4 | C24 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 4 | 2 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_2^4._{46}D_6
% in TeX
G:=Group("C2^4.46D6");
// GroupNames label
G:=SmallGroup(192,1152);
// by ID
G=gap.SmallGroup(192,1152);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,219,675,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=d,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations